Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata.

نویسندگان

  • Cornelia Maier
  • Pauline Popp
  • Nicole Sollfrank
  • Markus G Weinbauer
  • Christian Wild
  • Jean-Pierre Gattuso
چکیده

Ocean acidification is a major threat to calcifying marine organisms such as deep-sea cold-water corals (CWCs), but related knowledge is scarce. The aragonite saturation threshold (Ωa) for calcification, respiration and organic matter fluxes were investigated experimentally in the Mediterranean Madrepora oculata Over 10 weeks, colonies were maintained under two feeding regimes (uptake of 36.75 and 7.46 µmol C polyp-1 week-1) and exposed in 2 week intervals to a consecutively changing air-CO2 mix (pCO2) of 400, 1600, 800, 2000 and 400 ppm. There was a significant effect of feeding on calcification at initial ambient pCO2, while with consecutive pCO2 treatments, feeding had no effect on calcification. Respiration was not significantly affected by feeding or pCO2 levels. Coral skeletons started to dissolve at an average Ωa threshold of 0.92, but recovered and started to calcify again at Ωa≥1. The surplus energy required to counteract dissolution at elevated pCO2 (≥1600 µatm) was twice that at ambient pCO2 Yet, feeding had no mitigating effect at increasing pCO2 levels. This could be due to the fact that the energy required for calcification is a small fraction (1-3%) of the total metabolic energy demand and corals even under low food conditions might therefore still be able to allocate this small portion of energy to calcification. The response and resistance to ocean acidification are consequently not controlled by feeding in this species, but more likely by chemical reactions at the site of calcification and exchange processes between the calicoblastic layer and ambient seawater.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

End of the Century pCO2 Levels Do Not Impact Calcification in Mediterranean Cold-Water Corals

Ocean acidification caused by anthropogenic uptake of CO₂ is perceived to be a major threat to calcifying organisms. Cold-water corals were thought to be strongly affected by a decrease in ocean pH due to their abundance in deep and cold waters which, in contrast to tropical coral reef waters, will soon become corrosive to calcium carbonate. Calcification rates of two Mediterranean cold-water c...

متن کامل

Resistance of Two Mediterranean Cold-Water Coral Species to Low-pH Conditions

Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA), these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC) species react to such changes in the seawater chemistry. The present ...

متن کامل

Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals.

Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidificat...

متن کامل

Prey-capture rates in four Mediterranean cold water corals

Little is known about the basic biology of deep-water coral species. In this study, we experimentally assessed the rates of ingestion of Artemia salina adults and nauplii by the 4 Mediterranean cold water coral species Dendrophyllia cornigera, Desmophyllum cristagalli, Madrepora oculata, and Lophelia pertusa. All species ingested A. salina in adult and nauplii forms. L. pertusa showed the highe...

متن کامل

Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification

Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2016